On Best Approximation by Truncated Series*

Harold Z. Olun
Massachusetts Institute of Technology, Lincoln Laboratory, Lexington, Massachusetts 02173

Communicated by T. J. Rivlin
Received December 20, 1979

Let T_{k} be the Chebyshev polynomial of the first kind of degree k. In [3] Rivlin showed that best uniform polynomial approximations to

$$
f_{1}(x)=\sum_{j=0}^{\infty} t^{j} T_{a j+b}(x)=\frac{T_{b}(x)-t T_{i b-a \mid}(x)}{1+t^{2}-2 t T_{a}(x)}
$$

are truncations, with a modification of the last term in the truncated series. That is, p_{n}^{*}, the best uniform polynomial approximation of degree n to f_{1} on $[-1,+1]$, is given by

$$
p_{n}^{*}(x)=\sum_{j=0}^{k} t^{j} T_{a j+b}(x)+\frac{t^{k+2}}{1-t^{2}} T_{a k+b}(x),
$$

for $a k+b \leqslant n<a(k+1)+b$.
In [2] we considered

$$
f_{2}(x)=\sum_{j=0}^{\infty} t^{j} U_{a j+b}(x)=\frac{U_{b}(x)-t U_{b-a}(x)}{1+t^{2}-2 t T_{a}(x)}
$$

where U_{k} is the Chebyshev polynomial of the second kind of degree k, and we let $U_{-1}(x)=0$ and $U_{b-a}(x)=-U_{a-b-2}(x)$ for $a>b+1$. We attempted to obtain best uniform polynomial approximations by truncating the series and modifying two terms. This could only be done for $a=2$. Then, for $k \geqslant 1$ and $2 k+b \leqslant n<2(k+1)+b$, the best uniform approximation of degree n to f_{2} on $[-1,+1]$ is given by

$$
\begin{aligned}
p_{n}^{*}(x)= & \sum_{j=0}^{k} t^{j} U_{2 j+b}(x)-\frac{t^{k+2}}{(1-t)^{2}(1+t)} U_{2(k-1)+b}(x) \\
& -\frac{\left(t^{2}-t-1\right)}{(1-t)^{2}(1+t)} U_{2 k+b}(x)
\end{aligned}
$$

* This work was sponsored by the Department of the Army.
(In the series for both f_{1} and f_{2}, a and b are non-negative integers, $a>0$, $-1<t<+1$.)

We can show that f_{2} differs from f_{1} in the following sense. For $b_{1}>2$, there are no values of a, b_{2}, α, β such that $f_{2}\left(2, b_{1}\right)=\alpha f_{1}\left(a, b_{2}\right)+\beta$ for all values of t. (We have modified the notation to indicate the dependence of f_{1} and f_{2} on the parameters a and b.) Thus, the best approximations to $f_{2}\left(2, b_{1}\right)$ cannot be obtained by modifying the best approximations to some $f_{1}(a, b)$ solely by multiplicative and additive constants.

However, we now find that there is a simple way of deriving the approximations to $f_{2}\left(2, b_{1}\right)$.

Proposition. For $b \geqslant 2, f_{2}(2, b)=(2 /(1-t)) f_{1}(2, b)+(1 /(1-t)) U_{b-2}$.
Proof. The proposition is equivalent to the equality

$$
\begin{equation*}
\left(U_{b}-t U_{b-2}\right)(1-t)=2\left(T_{b}-t T_{b-2}\right)+U_{b-2}\left(1+t^{2}-2 t T_{2}\right) \tag{1}
\end{equation*}
$$

It is easy to verify (1) directly for $b=2$ and 3 . For $b \geqslant 4$, we use the identity $2 T_{k}=U_{k}-U_{k-2}$ for $k=b$ and $b-2$. Equation (1) becomes

$$
\begin{equation*}
2 T_{2} U_{b-2}=U_{b}+U_{b-4} \tag{2}
\end{equation*}
$$

In [1, p. 187, Eq. (36)] we have $2 T_{m} U_{n-1}=U_{n+m-1}+U_{n-m-1}$ for $n>m$. Letting $n=b-1$ and $m=2$, Eq. (2) follows, and the proof is complete.

If we indicate the approximations to $f_{1}(2, b)$ and $f_{2}(2, b)$ by $p_{1, n}^{*}$ and $p_{2, n}^{*}$, respectively, then $p_{2, n}^{*}=(2 /(1-t)) p_{1, n}^{*}+(1 /(1-t)) U_{b-2}$. This relation is not obvious from simple inspection of the forms of $p_{2, n}^{*}$ and $p_{1, n}^{*}$.

Approximation by a modified truncation is a particularly useful and easy method. Clearly, this can be done for very few classes of functions. We can approximate a function which differs by a polynomial from a constant multiple of a function whose approximations are known, such as with $f_{2}(2, b)$ and $f_{1}(2, b)$, but it is not always easy to recognize that the functions are related in this manner.

Consider $f_{2}\left(a_{1}, b_{1}\right)=\alpha f_{1}\left(a_{2}, b_{2}\right)+p_{m}$. If this relation held for a given a_{1} and b_{1} and some constants α, a_{2}, b_{2} and polynomial p_{m}, then we would require $a_{2}=a_{1}$ in order to have the same poles for all values of t. We conjecture that if $a_{1} \neq 2$, we cannot find suitable α, b_{2}, and p_{m}. The lack of such a relation seems to stem from the need to replace the identity $2 T_{k}=$ $U_{k}-U_{k-2}$, which was vital to the proof of the proposition for $a_{1}=2$. The inability of generating approximations to $f_{2}\left(a_{1}, b_{1}\right)$ for $a_{1} \neq 2$ also indicates the special nature of the case $a_{1}=2$.

References

1. A. Erdelyi, Ed., "Higher Transcendental Functions," Vol. II, McGraw-Hill, New York, 1953.
2. H. Z. Ollin, Best uniform polynomial approximation to certain rational functions, J. Approx. Theory 26 (1979), 382-392.
3. T. J. Riveln, Polynomials of best uniform approximation to certain rational functions, Numer. Math. 4 (1962), 345-349.
